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ABSTRACT: Mooney relaxation is highly nonlinear, strongly differs from stress relax-
ation at small strains, and can be described by Wagner’s nonlinear rheological model for
polymer melts. In the practical evaluation, the Mooney Stress Relaxation slope is more
accurate than quantities such as t80. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74:
1207–1219, 1999
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INTRODUCTION

The Mooney Stress Relaxation test, described by
Koopmann and Kramer1 and normalized by
ASTM,2 is used more and more often to determine
the elastic effects in the rheology of unvulcanized
elastomers. The test is shown in Figure 1 and
explained in the legend. Elastomers with high
molecular weight, broad molecular weight distri-
bution, and/or long-chain branching show much
slower relaxation than good flowing elastomers of
low molecular weight.

Attempts have been made (see, e.g., ref. 3) to
describe Mooney Stress Relaxation by linear vis-
coelastic theory.4 In view of the large strains
(about 400), such attempts appear questionable
and indeed, as shown in the next section, the
theory is inadequate. The relaxation curve M(t)
strongly differs from the stress–relaxation modu-
lus G(t) at small strains. A more realistic theory,
taking the nonlinear effects into account, is pre-
sented in the third section. It is based on Wagner’s
nonlinear model originally developed for polyeth-
ylene melts.5–7 The third section describes the
principles; a verification on the basis of experi-
mental data is given in a Part II of this series.8

A practical point concerns the way in which the
rough data of the Mooney Stress Relaxation test

should be evaluated. Experiments reveal that the
torque relaxation can be approximated by a power
law:

M~t! 5 M1t2a (1)

in which t is the time in seconds, M1 is the torque
at t 5 1 s, and a is a constant exponent.

In the literature, a discussion arose as to which
quantity should be used to characterize the relax-
ation. Some authors9–11 prefer exponent a; oth-
ers12 propose the quantity t80, as defined in Fig-
ure 1, and also, the surface area A 5 * M(t) dt
below the relaxation curve M(t) between the two
fixed times t1 and t2 has been advocated.2 Obvi-
ously, the three quantities are related one-to-one
if eq. (1) were exact. However, eq. (1) is an ap-
proximation and the sensitivity to experimental
errors may be different for the three quantities. A
simple error analysis given in the fourth section
reveals that, in general, slope a is the most accu-
rate, whereas t80 is considerably less accurate.

INADEQUACY OF A LINEAR VISCOELASTIC
DESCRIPTION OF MOONEY STRESS
RELAXATION

The strain history shown in Figure 1 is a ramp
between t 5 2240 s and t 5 0:
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g 5 @t 1 t1#q; 2 t1 , t , 0 (2)

in which q is the strain rate and t1 5 240 s is the
straining period. Substitution into Boltzmann’s
superposition (linearity) integral immediately
yields

M~t! 5 cq E
0

t1

G~t 1 t! dt (3)

where q is the strain rate (for 2t1 , t , 0), c is
the geometrical factor determined by the instru-
ment, t1 5 240 s is the strain time, t is the time
after cessation of shearing, and t is the integra-
tion variable in time scale.

In the practical Mooney Stress Relaxation test,
time t is always short compared to t1 (e.g., with t1
5 240 s and t , 10 s, we have t/t1 , 1/ 24
5 0.042). According to eq. (3), M(t)/[cqt1] is the
average value of all G(t 1 t) values with t be-
tween 0 and t1. Since t ! t1, most of the t 1 t
values are much larger than t. For such t 1 t
values, G(t 1 t) hardly depends on t because G
generally varies slowly with the argument t 1 t,
whereas t @ t. (Note that d ln G(t 1 t)/d ln t
5 2nt/(t 1 t), where n is the double-logarithmic
slope of G for t 1 t.) Thus, the rapid relaxation of
M(t), shown in Figure 1, is impossible; the torque
built up over 240 s cannot relax within 10 s. As an
example, consider the case that G(t) can be ap-
proximated by a power law:

G~t! 5 G1t2n (4)

At the temperatures where Mooney Stress Relax-
ation tests are done, exponent n of commercial
elastomers ranges between 0.3 and 0.7.8 Substi-
tution of eq. (4) into (3) yields

M~t! 5 M0@~1 1 z!12n 2 z12n#;

z 5 t/t1;

M0 5 cqG1t1
12n/~1 2 n! (5)

in which M0 is the torque at z 5 0. Plots of
M(t)/M0 for various values of n are shown in
Figure 2. For practical t/t1 values (,0.05; see
before), the relaxation is quite slow. The rapid
relaxation found in actual Mooney tests is not
reproduced, implying that the linear theory is
inadequate.

In view of these results, Venneman’s3 theory,
that links Mooney Stress Relaxation to the small-
strain mechanical loss factor tan d, must be con-
sidered inadequate. Indeed, tan d generally cor-
relates with the double-logarithmic slope of
small-strain stress relaxation modulus G(t) or
dynamic modulus G9(v)4:

tan d < 21
2 p d log G/d log t

< 1
2 p d log G9/d log v (6)

where log x is the 10-logarithm and ln x is the
natural logarithm of x. However, these small-
strain slopes are not simply related to the slope of

Figure 1 Outline of the Mooney Stress Relaxation
test; for experimental details, including geometrical
ones, see ref. 2; g (dashed lines) denotes the pre-
scribed shear strain, M (full curve), the measured
torque. First, the sample is equilibrated for 60 s to
the required temperature, without application of
shear. Next, the sample is sheared at a constant rate
for 4 min to a strain of about 400. Next, the shear
strain is kept constant (g0) and the relaxation of M(t)
measured as a function of time t. Time t is taken zero
at the moment of rotor stop (cessation of shearing).
Usually the measuring period is only a few seconds to
tens of seconds (i.e., much shorter than the original
shearing time of 240 s). Thus, the times in the figure
are not to scale; see arrows below the figure. The
torque at the moment of rotor stop is denoted by M0.
Times t50 and t80 refer to the moments at which M
had decreased to 50 and 20% of M0, respectively. In
the Mooney instrument, the shear strain is not con-
stant but increasing from zero at the rotation axis to
a maximum at the outside of the sample.2 For sim-
plicity, the present treatment is formulated for ho-
mogeneous shearing; corrections for the inhomogene-
ities can easily be made.8
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the (large-strain) Mooney Stress Relaxation (next
section).

NONLINEAR THEORY OF MOONEY STRESS
RELAXATION; APPLICATION OF
WAGNER’S MODEL

The Wagner model5–7 is an empirical generaliza-
tion of Boltzmann’s superposition principle. This
description, although fully nonlinear viscoelastic,
is limited to materials that do not fail during the
Mooney test. For prescribed straining, starting at
time 5 2`, the superposition principle says

s~t! 5 E
2`

t

G~t 2 j!ġ~j! dj

5 E
2`

t

G~t 2 j!$d@g~j! 2 g~t!#/ dj% dj

5 E
2`

t

Ġ~t 2 j!@g~j! 2 g~t!# dj (7)

in which g is the shear strain, s is used as a
general symbol for stresses, including, in this
case, shear stress, j is an integration variable on
time t scale, and a dot denotes differentiation
with respect to the argument, although it is as-
sumed that G` 5 G (t 5 `) 5 0 (fluid).

Based on Lodge’s temporary network theory for
elastic fluids,7 Wagner assumes that the nonlin-
earity can be described by a damping function hs

(index s stands for shear) that depends on the
absolute value of g(j) 2 g(t). Equation (7) is then
replaced by:

s~t! 5 E
2`

t

Ġ~t 2 j!

3 hs~ug~j! 2 g~t!u!@g~j! 2 g~t!# dj (8)

where uxu denotes the absolute value of x.
By partial integration and with G` 5 0, eq. (8)

changes into the alternative form of

Figure 2 Mooney Stress Relaxation, M(t)/M0, as calculated for a linear viscoelastic
material with a stress–relaxation modulus according to eq. (4). Relevant n values for
practical elastomers range between 0.3 and 0.7; symbols refer to n 5 0.3 ({), 0.5 (h),
and 0.7 (‚). In practical tests, time t remains short compared to straining time t1 (e.g.,
z 5 t/t1 , 0.05). The figure shows only limited relaxation, certainly not the rapid
relaxation down to about zero as shown by actual Mooney tests (c.f., Fig. 1). This
demonstrates the inadequacy of the linear theory.
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s~t! 5 2E
2`

t

hs~ug~j! 2 g~t!u!

3 @g~j! 2 g~t!# dG~t 2 j!

5 E
2`

t

G~t 2 j!@d$hs~ug~j! 2 g~t!u!

3 @g~j! 2 g~t!#}/ dj] dj (9)

We now consider some special cases.

Step–Strain Stress Relaxation; Determination
of the Damping Function5–7

We have g(t) 5 0 for t , 0 and g(t) 5 g0 for t $ 0 and
apply eq. (8). Part of the integral for j . 0 disap-
pears because g(t) then equals g(j) 5 g0. For j , 0
and t $ 0, we have g(j) 2 g (t) 5 2g0 [i.e., g(j) 2 g(t)
and hs(ug(j) 2 g(t)u) are constant and can be put
outside the integral]. With G` 5 0, we get

s~t! 5 2g0hs~g0!E
2`

0

Ġ~t 2 j! dj 5 g0 hs~g0!G~t!

(10)

Consequently, the apparent nonlinear stress–re-
laxation modulus Ga(t) 5 s(t)/g0 equals the
small-strain modulus, G(t), multiplied by the
damping function hs(g0). Since strain, g0, is con-
stant, hs is also constant and the same applies to
ratio Ga(t)/G(t):

Ga~t!/G~t! 5 hs~g0! (11)

Thus, we can find the damping function by mea-
suring Ga(t) at various values of g0. Experiments
on polyethylene (PE)7 reveal that hs decreases
exponentially with g0; the simplest description
reads

hs~g0! 5 exp(2mg0) (12)

with a coefficient m of 0.1–0.2 for PE. A refined
description uses two or more exponentials5–8; in
the sequel we confine ourselves to eq. (12).

Mooney and Mooney Stress Relaxation Test

We now have (see Fig. 1)

g~t! 5 0 for t , 2t1 (13)

g~t! 5 q~t 1 t1! for 2 t1 , t # 0 (14)

g~t! 5 g0 for t $ 0; g0 5 qt1 (15)

Mooney Test; Shearing Period; 2t1 < t < 0

For the period of shearing, eqs. (13)–(15) yield

g~j! 2 g~t!

5 H2q~t 1 t1!; j , 2t1; 2t1 , t , 0 ~16!
2q~t 2 j!; 2t1 , j , t; 2t1 , t , 0 ~17!

We now apply eq. (9). For j , 2t1, g(j) 2 g(t)
and hs(ug(j) 2 g(t)u) do not depend on j and the
integrant vanishes. Consequently,

s~t9! 5 E
0

t9

G~s!$d @qshs~qs!#/ ds% ds (18)

5 qt9hs~qt9! G~t9! 2 E
0

t9

Ġ~s! qshs~qs! ds (19)

where

s 5 t 2 j; t9 5 t 1 t1 5 shearing time
(20)

Differentiation of eq. (18) yields

ṡ~t9! 5 ds~t9!/ dt9 5 G~t9! d$qt9hs~qt9!%/ dt9 (21)

With g(t9) 5 qt9, we get

ṡ~t9!/q 5 G~t9! d$ghs~g!%/ dg;

where g 5 g~t9! (22)

Since the damping function hs(g) is unity for g
5 0 and decreases with g, the product ghs(g) will
show a maximum at some strain gmax. For exam-
ple, with eq. (12), we get ghs(g) 5 ge2mg and the
maximum is found at:

gmax 5 1/m (23)

Wagner’s theory thus predicts a maximum in the
Mooney curve at a strain value independent of q;
with m 5 0.1–0.2, we get gmax 5 5–10.

In an actual Mooney test, we have2 a rotation
speed of 2 rpm, a rotor diameter of about 40 mm,
and a height of the sheared rubber slab of about
2.5 mm. For the 4 min of rotation, the outer zone
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is displaced by 2 3 40 3 p 3 4 ' 1000 mm, which
implies a shear of about 1000/2.5 5 400 and a
shear rate q of 400/240 ' 1.67 s21. Consequently,
the peak in Mooney torque at gmax 5 1/m 5 5–10
occurs almost immediately after rotor start (after
1–2.5 s). In the actual rubber slab, the strain
increases from zero at the rotation axis to a max-
imum at the outer side of the rotor. For simplicity,
we only consider the maximum strains in the
outer layers of the rubber slab. Corrections for the
variation of strain over the slab can be made
easily.

The apparent viscosity h(t9) is defined as
s(t9)/q and can be found from eq. (19). As an
example, we apply the power law of eq. (4). For t9
5 240 s, the strain is about 400. With m 5 0.1–
0.2, this implies hs values of exp(2400 m) 5 e240

2 e280 that can be neglected. Therefore, the first
term in eq. (19) vanishes and with Eq. (4) and
Eqs. (6.1.1) and (6.5.3) of ref. 13 we get

s~t9! 5 qnG1 E
0

t9

s2n exp(2mqs) ds

5 nqG1~mq!n21@G~1 2 n! 2 G~1 2 n, mqt9!#

(24)

where G( x) is the gamma function and G(a, x) is
the incomplete gamma function. A stationary
state is reached for mqt9 @ 1; the incomplete G
function then reduces to zero [according to eq.
(6.5.32) of ref. 13, G(a, x) ' xa21 e2x for x @ 1];
consequently, the stationary viscosity hs is found
as

hs~q! 5 smqt93` /q 5 nG1~mq!n21G~1 2 n! (25)

The Cox–Merz relation is only approximately
obeyed. For the dynamic modulus Gd(v) and vis-
cosity hd(v) 5 Gd(v)/v, the power-law model
yields4

hd~v! 5 G1G~1 2 n!vn21 (26)

Therefore, the Cox–Merz ratio R, found from eqs.
(25) and (26) equals

R 5 h~q!/hd ~v 5 q! 5 n mn21 (27)

Some numerical values are given in Table I; we
observe that the ratio is on the order of but not
equal to unity.

Peak Stress. The ratio R9 between peak stress [at
t9 5 1/(mq)] and steady-state stress can be found
from eqs. (19) and (25). Of course, for the peak
stress, we cannot neglect the first term in eq. (19).
With mqt9max 5 1, this term becomes (1/m) hs(1)
3 G(t9max) 5 e21 G(t9max)/m. For the second term
in eq. (19), we use eq. (24) with mqt9 5 1. Adding
both contributions, we get

smax 5 e21G~t9max!/m 1 nqG1~mq!n21@G~1 2 n!

2 G~1 2 n, 1!# (28)

With G(t9max) 5 G1 t9max
2n and t9max 5 1/(mq), we

get

smax 5 n G1qnmn21@e21/n 1 G~1 2 n!

2 G~1 2 n, 1!# (29)

Together with eq. (25), this yields

R9 5 smax/smqt93` 5 @e21/n 1 G~1 2 n!

2 G~1 2 n, 1!#/G~1 2 n! (30)

Using the series expansion (6.5.29) and eqs.
(6.5.2)–(6.5.4) of ref. 13, we get

R9 5 e21$1/~nG~a!! 1 1/G~1 1 a!

1 1/G~2 1 a! 1 1/G~3 1 a! 1 · · ·% (31)

where a 5 1 2 n.
The function of eq. (31) is given in Table II.

Equations (30) and (31) show that the peak ratio
only depends on n and not on q or nonlinearity
parameter m, provided that mqt9 @ 1. The limit-
ing behavior for n 3 0 or n 3 1 is readily
understood. For n 3 0, we have a ' 1; the first
term in eq. (31) (with 1/n) becomes the leading
one and we get R9 ' e21/n. For n 3 1, we have
a3 0; G(a) becomes very large and the first term
in eq. (31) vanishes. For the remaining terms, we
take a ' 0 and find G(k 1 a) ' G(k) 5 (k 2 1)!,

Table I Cox–Merz Ratio R for Various Values
of n and m

Slope n m 5 0.1 m 5 0.2

0.25 1.41 0.84
0.50 1.58 1.12
0.75 1.33 1.12
1.00 1.00 1.00
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with k 5 1, 2, 3, . . . , ( x! denotes the factorial of
x). Therefore, the series in eq. (31) becomes 1/1!
1 1/2! 1 1/3! 1 . . . 5 e. Consequently, R9 con-
verges to unity for n 3 1 (see Table II). For
practical elastomers, slope n often lies between
0.3 and 0.7; consequently, we expect R9 values
between about 1.09 and 1.7. Moreover, the n
value generally decreases with increasing degree
of chain branching or entanglements. Conse-
quently, the peak value R9 increases when the
elastic effects become more dominant and R9 can,
in principle, be used as a measure for these ef-
fects. A comparison with experimental data is
given in Figure 3. The height of the overshoot
peak is predicted rather well. However, the scat-
ter in the experimental data is too large to decide
whether the trend of a decreasing R9 with in-
creasing n is really confirmed. A more compre-
hensive analysis appears necessary.

Mooney Stress Relaxation (t > 0)

We now have [see eqs. (13)–(15)]

g~j! 2 g~t!

5 H 2g0 5 2qt1 j , 2t1; t . 0 ~32!
qj 2t1 , j 2 t, , j , 0; t . 0 ~33!
0 0 , j , t; t . 0 ~34!

Substituting this into eq. (8), we get a formula
similar to eq. (19):

s~t! 5 g0hs~g0!G~t 1 t1!

2 E
0

t1

Ġ~t 1 s!qs hs~qs! ds (35)

where

s 5 2j (36)

As before, the first term in eq. (35) can be ne-
glected because of the very large strains. Taking
the power law of eq. (4) and the damping function
of eq. (12), we then get

s~t! 5 nqG1 E
0

t1

se2ps/~t 1 s!11n ds (37)

where

p 5 mq (38)

In this integral, ps runs from 0 at s 5 0 to pt1
5 mqt1 5 mg0 5 40–80 at s 5 t1. Therefore, the
exponent becomes extremely small at s 5 t1,
which means that the upper limit of the integral
can safely be changed into infinity

s~t!/@n G1 q# 5 E
0

`

se2ps/~t 1 s!~11n!

5 E
0

`

e2ps/~t 1 s!n ds 2 t E
0

`

e2ps/~t 1 s!n11 ds

(39)

Both standard integrals can be obtained from eq.
(6.5.3) of ref. 13. We get

s~t!/@nG1q# 5 pn21ept@G~1 2 n, pt!

2 ptG(2n, pt!] (40)

where G(a, x) is the incomplete gamma function
discussed before. For t 5 0, the result of eq. (25)
is reproduced as

s0/@n G1q# 5 G~1 2 n!pn21; s0 5 s ~t 5 0! (41)

The relaxation ratio f is found as

f~z! 5 s~z!/s0

5 ez$G~a, z! 2 zG~a 2 1, z!%/G~a! (42)

where

z 5 pt 5 mqt (43)

Table II Ratio R* of Peak Stress and Steady-
State Stress During the Mooney Test for
Various Values of Small-Strain
Stress–Relaxation Slope n

n R9

0.1 4.12
0.2 2.30
0.3 1.71
0.4 1.42
0.5 1.26
0.6 1.16
0.7 1.09
0.8 1.05
0.9 1.02
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a 5 1 2 n (44)

Clearly, the relaxation is a function of z 5 mqt
and a 5 1 2 n only (i.e., the shape of the relax-
ation curve on log t scale does not depend on mq
and variations in mq shift the relaxation curve
along the log t scale, without change in shape). Of
course, this only holds as long as the nonlinear
effects are very large and the first term in eq. (35)
can be neglected.

An alternative for eq. (42) can be obtained by
using recurrence formula (8.356.2) of ref. 14:

f~z! 5 $~1 1 z/n!ez G~a, z! 2 za/n%/G~a! (45)

A series expansion is obtained using function
g*(a, z), defined in Section 6.5 of ref. 13. We have

G~a, z!/G~a! 5 1 2 zag*~a, z! (46)

With eq. (45), this yields

f~z! 5 ~1 1 z/n!ez 2 za/@nG~a!#

2 ~1 1 z/n!ezzag*~a, z! (47)

in which we can substitute the convergent series
of eq. (6.5.29) of ref. 13,

Figure 3 Overshoot ratio R9 5 smax/sstationary versus slope n 5 2d ln G/d ln t of the
small-strain relaxation modulus at 125°C as calculated by eq. (31) (E) and as deter-
mined experimentally.16 The experiments revealed that a reliable peak value is only
found when the heating period preceding the Mooney test is taken much longer than
the usual duration of 1 min (see ref. 8); here, a value of 10 min has been taken. The data
refer to the following EPDM types:

Sample Mw/Mn

ML (1 1 4)
125°C n R9

(F) A ' 4 34 0.49 1.52
(}) B 2.8 37 0.49 1.14
(l) C ' 4 47.5 0.44 1.52
(■) D 4.5 65 0.38 1.45
(3) E 3.8 74 0.61 1.29
(1) K — 47 0.32 1.60
(2) L — 46 0.77 1.13
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f~z! 5 ~1 1 z/n!ez 2 za/@nG~a!#

2 ~1 1 z/n!za O
k50

`

zk/G~a 1 k 1 1! (48)

Special Cases

Small Values of z. The series of eq. (48) contains
integral powers of z as well as fractional powers
such as za. If n , 1, a 5 1 2 n is less than unity,
and for z ! 1, the fractional power za becomes the
leading term. We then find

f~z! < 1 2 za/@nG~1 1 a!#;

z ! 1; 0 , a 5 1 2 n , 1 (49)

Large Values of z. The asymptotic expansion
(6.5.32) of ref. 13 reads

G~a, z! < za21e2z@1 1 ~a 2 1!/z

1 ~a 2 1!~a 2 2!/z2 1 · · ·#; z3 ` (50)

in which a 5 1 2 n, a 2 1 5 2n, a 2 2 5 2(1
1 n), etc. Substitution into eq. (45) yields

f~z!G~a! 5 ~1 1 z/n!za21@1 2 n/z 1 n~n 1 1!

/z2 2 n~n 1 1!~n 1 2!/z3 1 · · ·# 2 za/n (51)

or

nf~z!G~a!z2a 5 ~1 1 n/z!@1 2 n/z 1 n~n 1 1!

/z2 2 n~n 1 1!~n 1 2!/z3 1 · · ·#

2 1 5 n/z2 2 2n~n 1 1!/z3 1 · · · (52)

Therefore

f~z! < z2~11n!/G~1 2 n!; for z @ 1 (53)

f~t! 5 s~t!/s0 < ~ pt!2~11n!/G~1 2 n!; pt @ 1 (54)

Consequently, at large values of t, the stress
relaxes with power 2(1 1 n) that is one unit
higher than that of the small-strain stress re-
laxation. This unexpected result, which may be
due to the simplifications implied in eqs. (4) and
(12), also follows from eq. (39). For large p val-
ues, the exponent has already decreased to zero
before the function (t 1 s)2(11n) begins to deviate
from its value t2(11n) at s 5 0. Therefore, this
function may be taken outside the integral and
we obtain

s~t!/@nG1q# 5 t2~11n! E
0

`

se2ps ds 5 t2~11n!/p2 (55)

With eq. (41), this reproduces eq. (54). The accu-
racy of the approximations of eqs. (53) and (54)
can be estimated by considering the ratio of the
second and first term in the expansion of eq. (52);
we find a ratio of 2(1 1 n)/z. At z 5 10 and n , 1,
the approximation is to within 40%; for z . 100,
and n , 1, to within 4%.

COURSE OF MOONEY STRESS
RELAXATION

Ratio f( z) versus z, as calculated with eq. (48), is
given in Figure 4. We observe the following.

1. Due to the strong nonlinear effects, the
relaxation is much faster than in the lin-
ear case (Fig. 2). For m between 0.1– 0.2
(as for PE7), the q value of 1.67 s21 in the
Mooney test leads to a p 5 mq value of
0.17– 0.34 [i.e., we have z/t 5 0.17–0.34
[c.f., eq. (43)]. Thus, the t range up to 10 s
as practiced in Mooney Stress Relaxation
tests corresponds to maximum z values of
1.7–3.4. Figure 4 shows that for common
n values (0.2– 0.8), most of the stress has
relaxed within this period. Thus, it is the
nonlinear effects that are responsible for
the rapid Mooney Stress Relaxation.

2. The higher the value of n, the faster the
relaxation is. Therefore, the more elastic
the polymer melt or elastomer, the
slower the Mooney relaxation. The relax-
ation rate can be characterized by z80 or
z50 (i.e., by the time, z, at which s has
relaxed to 100 2 80 5 20% or to 100 2 50
5 50% of the original value s0). Plots of
these time parameters as functions of n
are given in Figure 5; obviously, z50 or z80
correlate well with n. The same applies to
the more common Mooney-relaxation pa-
rameters t80 or t50, which are propor-
tional to z80 and z50 [tx 5 zx/(mq); see eq.
(43)].

3. Figure 4 further shows that the Mooney
Stress Relaxation does not obey a power
law. The lines are strongly curved and only
at large z values is a final slope of 2(1 1 n)
reached. This suggests that a treatment of
Mooney Stress Relaxation by a power
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law1–2 should be considered as an approx-
imation, valid for a narrow time interval
only. We further observe that the slope in-
creases with time.

4. Figure 4 and eq. (48) finally show that the
shape of the f versus log z or log t curve is
independent of deformation rate q and
nonlinearity parameter m. The only effect
of q and m is to shift the relaxation curve
along the log t scale (i.e., the higher qm, the
faster the relaxation on log t scale). As said
before, this only holds as long as the non-
linearities are sufficiently strong [i.e., the
first term in eq. (35) can be neglected].

So far, for the theoretical treatment of Mooney
Stress Relaxation, verification, using experi-
mental data on EPDM rubbers with widely
varying properties, is given in Part II of this
series.8

ACCURACY OF MOONEY STRESS
RELAXATION SLOPE, t80, AND SURFACE A

We now investigate which of the three parame-
ters is the most accurate. We consider the M(t)
versus t curve (Fig. 1) and assume that (i) the only

experimental error is a random variation dM in
M(t) with a magnitude less than some quantity D,
independent of time (i.e., udMu , D), (ii) the real
course (no errors) of M follows a power law with
negative slope 2a (a is taken positive). As shown
in the previous section, a power law can only be
an approximation. As will be clear from the text,
such an approximation suffices for the purpose of

Figure 5 z80 and z50 as function of the slope n of the
small-strain stress relaxation.

Figure 4 f( z) 5 s( z)/s0 versus z 5 mqt in Mooney Stress Relaxation for n 5 0.2 ({),
0.4 (h), 0.6 (‚), and 0.8 (3) as calculated with eq. (48). The slope at z 3 ` equals 2(1
1 n) [see eq. (53)]; the slope of 21 is as indicated. For the z range of practical Mooney
Stress Relaxation tests ( z , 1.7–3.4; see text), the limiting slope of 2(n 1 1) has not
been reached in all cases.
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the present error analysis. The M versus t curve
is supposed to be measured between times t1 (e.g.,
1 s) and t2 (e.g., 10 s). The values of M at t1 and t2
are denoted by M1 and M2, respectively; M1 is
called the intercept.2 We further define time tx as
the time at which M(tx)/M1 has decreased to 1
2 x. Thus, our t0.8 can be compared with the
time, t80, used in the literature2,12 and more gen-
eral, our tx with the t100x parameter from litera-
ture. The only difference is that we define tx on
the basis of the value, M1, measured at the short-
est time t1; usually, tx is defined on the basis of
the Mooney value, M0, at rotor stop. For the pur-
pose of error analysis, this difference is consid-
ered insignificant.

Since M(t) decreases with time, the random
absolute variation dM with amplitude, D, leads to
a relative error dM/M(t) that increases with time.
For example, for x 5 0.8, the relative error in M
at t0.8 is five times larger than that at t1. Denot-
ing the relative error at t1 by « 5 D/M1, the
relative error at tx equals «/(1 2 x). Since the
analysis of the Mooney Stress Relaxation data is
generally based on a log–log plot of M versus t, we
have to consider the errors in ln M. For small
errors, the absolute error d ln M in ln M equals
the relative error, dM/M, in M; we will use this
simplification throughout. Thus, the absolute er-
ror in ln M increases with time as illustrated in
Figure 6.

The errors in intercept, slope, surface, and tx
are found as follows.

Intercept (i.e., the value of M and t 5 t1). Accord-
ing to our definitions, the relative error dM/M for

M 5 M1 equals « 5 D/M1. Note that we consid-
ered the time values as error free (i.e., we as-
sumed that the rotor stop was instantaneous; an
ill-defined slow-down period induces additional
errors, particularly at short times).

Time tx. Since the double log slope equals 2a, we
have d ln M/d ln t 5 2a. Since the relative error
in M at tx as well as the absolute error d ln M in
ln M are equal to «/(1 2 x), the relative error in
tx is given by:

dtx/tx 5 «/@a~1 2 x!# (56)

Obviously, the error in tx is considerably larger
than that in the intercept. [Example: for x 5 0.8
and a 5 0.5, we get an error of 10« (ten times that
of the intercept)]. The error becomes greater the
smaller slope a is and the more x approaches
unity. Clearly, tx is not an accurate quantity and
the proposal to use t80

12 (our t0.8) needs reconsid-
eration; t50 is 2.5 and t40 is 3 times more accurate.

Slope. The error can be calculated as shown in
Figure 7. In the absence of errors we have line a
given by:

line a: ln M 5 ln M1 2 ay; y 5 ln~t/t1! (57)

Line b is the upper possibility with all errors
equal to 1D 5 «M1. The relative error in M(t)
then equals 1« M1/M(t) 5 «(t/t1)a 5 « eay.
Since, for small errors, the absolute error in ln M
equals the relative error in M, line b is given by:

Figure 6 Effect of a time-independent error D on the plots of M and ln M versus log
t. Because of the decrease of M with time, the relative error in M and the absolute error
in ln M increase with time.
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line b: ln M 5 ln M1 2 ay 1 «eay (58)

In the same way, the minimum course is given by:

line c: ln M 5 ln M1 2 ay 2 «eay (59)

Line d is the straight line with minimum slope, p,
that passes through the error zone. It goes
through the lowest ln M value at y 5 0 (t 5 t1; ln
M 5 ln M1 2 «) and touches upper line b at some
point y1 (see Fig. 7). The formula is

line d: ln M 5 ln M1 2 « 2 py (60)

The value of p can be found from the condition
that, at y 5 y1, the M values as well as the slopes,
d ln M/d y, of lines b and d should be equal.
Consequently,

2 ay1 1 « exp~ay1! 5 2« 2 py1;

equal M values (61)

2 a 1 «a exp~ay1! 5 2p; equal slopes (62)

Writing z 5 ay1, eqs. (61)–(62) yield z 5 1 1 e2z,
which has the solution z 5 1.2785. Substituting
this in eqs. (61)–(62), we find

~a 2 p!/a 5 3.6 « (63)

Consequently, the minimum slope is 1 2 3.6«
times the slope, a, in the absence of errors. In the
same way, we find a maximum slope of (1
1 3.6«)a. Altogether this means that the relative
error in slope is given by:

da/a 5 3.6 « (64)

As is clear from Figure 7, the error in the slope
is not sensitive to the large errors in ln M at large
t/t1 values. Further, the error in slope seems in-
dependent of the length of the time interval over
which the Mooney Stress Relaxation is measured,
which contradicts the well-known fact that errors
in slope increase with decreasing length of the
time interval. The explanation is that we as-
sumed that the curve was measured up to at least
the point y1 (Fig. 7). Since z 5 ay1 5 1.2785, y1
5 ln(t/t1) must exceed 1.2785/a (i.e., a minimum
length has been assumed implicitly and the min-
imum time interval increases with 1/a).

Ratio, R, of the relative errors in tx and slope a
is found from eqs. (64) and (56):

R 5 @dtx/tx#/da/a 5 1/@3.6a~1 2 x!# (65)

The ratio increases with 1/a and 1/(1 2 x); some
numerical values are given in Table III. Obvi-
ously, the t80 parameter is always less accurate
than the slope. As said before, the parameters t50
and t30 are, respectively, 2.5 and 3 times more
accurate.

Surface. According to ref. 2, A is the surface area
under the M versus t curve (linear plot) between
t1 and t2. Assuming t1 and t2 are fixed and error-
free, the error in A equals

dA 5 ~t2 2 t1!D (66)

For a power law with slope a Þ 1 and initial value
M1 at t1, the surface is given by:

Table III Ratio, R, of Relative Errors in tx and
Slope a According to eq. (65) for Three Values
of x, as a Function of Slope a

a t30 t50 t80

0.2 1.99 2.78 6.95
0.4 0.99 1.39 3.47
0.6 0.66 0.93 2.32
0.8 0.50 0.69 1.74
1.0 0.40 0.55 1.39

Figure 7 Effect of errors on the slope. Line a, eq. (57),
refers to zero errors, line b to maximum positive errors,
line c to maximum negative errors. Line d [Eq. (60)] is
the straight line with the lowest possible slope that
passes throughout the error band. It touches the point
ln M1 2 « at y 5 0 and the line b (upper boundary) at
y 5 y1. The error zone widens for y 3 `; therefore, the
minimum slope is not sensitive to the large errors in ln
M at large y values.
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A 5 @t1M1/~1 2 a!#@~t2/t1!
12a 2 1# (67)

Combining eqs. (66) and (67) with « 5 D/M1, we
find for the relative error:

dA/A 5 «~1 2 a!@r 2 1#/@r12a 2 1#;

r 5 t2/t1 . 1 (68)

The ratio R9 5 [dA/A]/[da/a] is found from eqs.
(64) and (68):

R9 5 ~1 2 a!~r 2 1!/@3.6~r12a 2 1!# (69)

Some numerical values are given in Table IV. We
observe that the errors in surface increase with a
and r. For r 5 100, the errors in surface are
larger than those in slope for a . 0.4; for r 5 10,
they are smaller or about equal.

We can compare the present results with
those of a round robin test.15 These tests had a
t2 value of 100 s and a t1 between 1 and 2 s (not
accurately known). Thus, r 5 100 for t1 5 1 s and
50 for t1 5 2 s. The measured slope values for
rubbers F-I are given in the second column of
Table V and range between 0.4 and 0.8. Since r
is on the order of 100, Table IV suggests that

the error in surface will be larger than that in
slope. The measured ratio of the relative coeffi-
cient of variation in surface and slope is given in
the third column. As suggested by the above
error analysis, the relative errors in the surface
are larger than those in the slope. The ratio
calculated with eq. (69) is given in the fourth
and fifth columns, for t1 5 1 s and t1 5 2 s,
respectively.

Summarizing, the relative errors increase in
the order of intercept, slope, t80. For a slope be-
tween 0.2 and 1, the errors in t80 are 1.4–7 times
larger than those in the slope. The errors in sur-
face depend on the t2/t1 ratio; for r 5 100, the
surface is less accurate, for r 5 10, the surface is
more accurate than the slope.

This result is not surprising. As shown in
Figure 8, the errors in ln M increase with in-
creasing time. A quantity such as t80 is solely
determined by the long-time ln M values and is,
therefore, the least accurate. Surface A is deter-
mined by the M(t) values over the whole range
and has an average accuracy. The slope is de-
termined by the shorter time values and is bet-
ter than t80. The most accurate is the intercept,
because it is determined by the shortest time
value, M(t1) of M(t); however, this intercept
gives no information about the relaxation
rate.

CONCLUSIONS

1. Mooney Stress Relaxation cannot be de-
scribed by linear viscoelastic theory; this
theory fails in explaining the very exis-
tence of a rapid relaxation (e.g., in 10 s
after 4 min of shearing).

2. Mooney viscosity and Mooney Stress Re-
laxation can be described by Wagner’s non-
linear rheological theory.

Table IV Ratio R* of the Relative Errors in
Surface and Slope According to eq. (69) for Two
Values of r 5 t2/t1; Numbers in Parentheses
Give the Fractional Stress, r2a, at the
End of the Relaxation Period

a r 5 10 r 5 100

0.2 0.38 (0.63) 0.57 (0.40)
0.4 0.50 (0.40) 1.11 (0.16)
0.6 0.66 (0.25) 2.07 (0.063)
0.8 0.86 (0.16) 3.64 (0.025)
1.0 1.25 (0.10) 6.88 (0.010)

Table V Ratio R* of the Relative Errors in Surface A and Slope a

Material15
Slope a15

Experimental

Ratio R9

Experimental15

Theory, Eq. (69)

t1 5 1 s t1 5 2 s

F 0.41 1.65 1.2 0.9
G 0.82 1.52 3.8 2.4
H 0.68 1.41 2.6 1.7
I 0.74 1.65 3.1 2.0
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3. The peak in the Mooney (shearing period)
occurs just after rotor start; its height is
1–2 times the steady-state value of the
stress. The peak increases with increasing
elasticity (i.e., decreasing value of small-
strain double-logarithmic stress-relaxation
rate n). The peak may be used as a mea-
sure for the elastic effects in unvulcanized
elastomers.

4. As compared to the small-strain case, the
nonlinearities highly accelerate the Mooney
Stress Relaxation after rotor stop.

5. The double-logarithmic slope, 2m, of the
Mooney Stress Relaxation curve, is not
identical to the slope, 2n, at small strains;
for t 3 `, we have m 5 n 1 1.

6. The Mooney Stress Relaxation is not a
straight line in a double log plot; a power-
law approximation will only be valid over a
narrow time range.

7. Mooney Stress Relaxation is faster for the
larger slope, n; quantities such as t50 or t80

correlate well with n and can be used for
quality control; however, because of exper-
imental inaccuracies, t50 or t40 are to be
preferred over the inaccurate quantity t80.

8. Generally, the accuracy decreases in the
order of intercept, slope, t80.

Conclusions 3, 5, 6, and the first part of 7 refer to
small-strain relaxation according to a power law
with exponent n and a damping function with one
exponent only.
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Figure 8 Explanation of the different accuracy in
intercept, slope, etc. The (assumed) exact course of M(t)
is given by the thick line, the thin curves give the upper
and lower boundary of the error zone, the errors in ln M
increase with time. The arrows indicate the time
ranges that determine intercept, slope, surface, and
t80; schematical.
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